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1 Chapter 2
Exercise 2.1.
(a) X=0, w.p. 1
(b) X=0, w.p. 1

Exercise 2.2.
(a) obvious

(b) We start from the intermediate term:

P[Z > 2] = / ot

= /OO —@dt by part (a)
= @ — % + /:0 3%(% (> LHS, by integration by parts)
_ ) o) [T g9

= 3 +/ 3 75 dt

= ¢iz) B ¢Z(§) + 3¢Z(5Z) - /:O 5%6& (< RH S, integration by parts)

Exercise 2.3. (Polynimial Markov sharper than Chernoff)
For a given r > 0,

Exercise 2.4. (Hoeffding Lemma)



(a) By LX) — g [X*erX], we have (0) = 0 and ¢/(0) = E [X] = p.

drk

(b) Note that

-
i r / r 2
vo-io (o)
- sze(r)dP - (f;;(ém>
_ / 22dQ — ( / de) (by defining dQ — gj(g;)dl}’)
= Varg[X]

Easy to check that the newly defined measure dQQ whose Radon-Nikodym derivative with respect to
dP is %% = 557 is indeed a probability measure as JdQ= [ g%(i)d]? = 1. The last inequality follows
from the fact that for a bounded univariate random variable, assigning half probability mass to each
end point achieves the maximum variance, which provides an upper bound on sup,.cp [" (7)].

(¢) We show that X is Sub-Gaussian by its definition,

E [e" 0] = exp (4(r) - )

exp <1/)(0) + ' (0)r + %w"(e)rz — rp) (by Taylor expansion, where € € (0,7))

2/b—a\2
oo (205
b—a

The last inequality confirms that X belong to Sub-Gaussian class with parameter o = >5*.

Exercise 2.5.

2

(a) ByE[1+rX]<E[e*] <e 202“’“,%“ € R, we have

2_2
ezt

E[X] <

,Vr > 0.

r
Taking limit on the right-hand side, and letting r ~\, 0, we have E[X] < p. Since for —X, the
above analysis holds as well by modifying the = in the numerator to —r, we then have E [—X] < —p.
Combining two inequalities, we obtain E [X] = p.
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(b) Note that e # > E ["X] = E[S23%, 0| > E[1+rX + }(rX)?] holds for all r > 0 if the

[
third-moment of X is positive and holds for all » < 0 otherwise. WLOG, we assume E [X 3] > 0, then
we know that ) o
et 1 —rp

E[X?] <2 V>0

2
Let r \, 0, we have E [X?] < p? + o2, which implies Var[X] < o2



(¢) We provide a counterexample to disprove the statement. Consider a Bernoulli distribution with success

probability p = i, whose moment generating function is g(r) = 1 — p 4+ pe” and its variance is

Var[X] = 0.1875. To ensure the inequality g(r) < ™47k holds for all 7 € R, the parameter o2 is

required to be bigger than sup,cp QW. However when r = 1, QW ~ 0.2147 is larger than

Var[X]. Therefore, the parameter o2 should be larger than Var[X]. [Conjecture: for an uni-variate
random variable that is symmetric around its center, the parameter o2 is indeed its variance]

O
Exercise 2.6.
Since X2 > 0, a.s., we can use one-sided Bernstein’s inequality (2.23) to derive the bound:
né2ot
P[Z -E[Z] < —0%5] < exp (—n> .
| AN Ve
Then, to obtain the desired bound, it suffices to show that E [Xﬂ < 8o
E [X}] :/ P[X] >t]dt
0
- / P[X} > u'] du? (let t = u*)
0
o0 11.2
<4 / u? - 2e” 2.7 du (by Sub-Gaussian’s concentration)
0
jo%s) W2 2 2—1 2
=4. (202)2/ e mer () deeg
0 20 20'2
= 160'T(2)
=160 (worse by a constant 2)
O
Exercise 2.7. (Bennett’s inequality)
(a) Since |X| <), a.s., we know that
E lZ(AX)’“ =E|(AX)?) _(AX)F2[ <E[(AX)?] D (A)F2, VA >0
k=2 k=2 k=2
Then, for any A > 0,
AX o~ (AX)*
In (E [e ])1n<1E THAX + ) o YA >0
k=2
(oo}
B (AX)k
=1In (1 +E Y o
k=2
o (AX)k
<30
k=2
a1 (Ab)F2
<E[AX)] )
k=2
2 KN —1—\b
N A2h?
Now, we consider another random variable denoted as Y = — X, the above analysis still holds for all

A > 0. This implies that, for random variable X with any negative A, the desired inequality holds,
which completes the proof.



(b) We prove the inequality after taking logarithm on both sides:

In <IF’ liX7 > n(ﬂ) < —nAd + i¢X1(A)

i=1

n Ab 1—
< —nAd + Zof)\Q (e}\%z)\b> by part (a)
i=1

e”’—l—Ab)

= —nA\d + noZ\? ( 252

2
7 [b‘SAb—eM+1+Ab}

82 o2
no? bo ‘ bS
- —bTh (02) by setting A : Ab = In (1 + 02)

(c) We compare the inequalities for ) ;" X;:
e Eq.(2.22b) One-sided Bernstein’s inequality: P[> (X; — p1;) > nd| < exp (—W‘Szubé))
n2ei 9i T3

<
e Eq.(2.62) Bennett concentration inequality: P[Y " X; > nd] < exp (—%2 (g—i))

It suffices to show that
no? bd nd?
w2\ 2) 2 o

where A(u) = (1 +u)In(1+u) — u and g(u) sazy-  We notice that h(0) = g(0) = 0,
R'(0) = ¢'(0) = 0, but

1 216
h// — > —
W) =172 Z Group
Elementary calculus results in hA(u) > g(u),Vu > 0. Therefore, Bennett’s inequality is at least as
sharp as Bernstein’s inequality.

g"(u),Yu > 0.

O

Exercise 2.8.
(a) I can only prove a special case when C = 1. We first note that the given inequality (2.63) can be
separated into two parts according to t’s range.

2 -—15 exp (— 4 when t >
P[Z>t]<e 20750 =¢ 26(22 +4) < p( 4?2) ’ =
exp (_W> , when t <

c"dwg"em

By layer-cake representation, we have

E[Z]:/OOOIE”[Z>t}dt

v2

N +2 oo 4
S/ e_mdt—&—/z e wdt
0 2

b

oo t2 oo ‘
§/ e‘ﬁdt—i—/ e wdt
0 0

= /7 + 4b



(b)

Using part (a), it suffices to show that

+2

1 — R e Y
Pl=S"X,>t| <e 25+

Since X; satisfies Bernstein’s conditions, by Eq. (2.17a),

E[e*M] <e A5E YA € (0,1/b).

Then, we are able to calculate the probability:

n (P lix-ms < Ant+z)‘2 /2 VA € (0,1/b)
n 4 ' 1—)b) ’
nt? . « 2
= _m by setting \* = U
O
Exercise 2.9.
(a) This is a straightforward conclusion by applying Chernoff bound:
In(P[Z, <dn]) =In(P[-Z, > —nd])
<nln((1-a+ae?)er), YA>0 by i.i.d and Chernoff bound
1 . . o l-«a

=n [(15)ln< _5) +dln (5)} by setting A 71n<g) —1In (1—5)

(b)

= —nDkr(d||a)
The minimizer A\* we used in the second to the last equality is positive as § < o € (0,1/2]
e Hoeffding: P[>, X; —na <n(d — «)] <exp (—%)
e Inequality in part (a): P[>, X; < nd] < exp(—nDgr(d]|a))

It suffices to show 6 )2
n(d — a
— 7 <nD )
20(1 — ) — nDxr(d]|),

Denote the Lh.s as a function g, () and the r.h.s as another function h,(d). Then we have g,(a) =
ha(a) = 0. The first-order derivatives are

9h(0) = 5% <0 V6 € (0,a)
B0 = (2)—m($2) <0 W€ (0,0)

Moreover,
” 1 1

d) = >
90) =505 Z ai—a)
These results mean that both functions are decreasing and have value 0 at point § = «, but g, ()

decreases faster than h,(-). Therefore, g(&) > h(4),Vd € (0, ). (A same argument as that in Exercise
2.7)

= h!'(6), V5 € (0,q).

O

Exercise 2.10.



(a) We have relationships m = én < én. Since
P(Y, < on) = B [Z, < bn| > [z, = 3] = (”)amu S
m
Taking logarithm on both sides, then dividing by n, and finally replacing * with 5, we get the desired
inequality.

(b) Let Z, ~ Bin(n,3). With the fact that Y, are most likely to be m = on, we have the following
relationship:

P [V, =0n] 2Py =1], Y€ {0,1,2,...,n}.

Following the same operations in part (a), we can rewrite the inequality as:

%ln(z)—i—glno‘—i—(l—g)ln(l—a) > %IH(P[Yn =1))
— L (") > —0ln®—(1—4)In(1—a)+ %m(}p[yn =1)

> 5’ —(1-4)In (1 —8) + %m(}p[yn =1)).

The last inequality holds as the function is increasing in o and 6 < a. Then it remains to show

1
A e{o,1,... t, PIY, =1 > :
6{7 ) ’n}7s ) [n ]—1+n

There indeed exists such an [ since Y,, has only 1 + n outcomes, and obviously at least one outcome

should have a probability no smaller than p%n

(c) Substituting the inequality in part (b) into the r.h.s of the inequality in part (a), and rearranging, we
have:
< 1 1
L0 (P[Z, <6n)) > —Dgr(3]a)— n(n+1)

=  PlZ,=] > exp(—nDr (8 v))

1+n

Combining the result here and the result in Exercise 2.9 part (a), we bound Z,,’s lower tail bound from
both above and below. The bounds differ only in a constant factor.
1

e—mDxL@lla) < p |:Zn < gn} < e~ "Drr(]|e)
1+n - N N

Exercise 2.11.

(a) We use layer-cake representation and do integration on two different regions.

E[Z,] = /OOOP {mlax|Xi| > t] dt

uo oo
:/ P[max|xi|zt} dt+/ P[max|Xi|Zt dt
0 1 1

Uuo

< g +2n /OO P[X; > t]dt by union bound and X is symmetric
U

< wug+2n /OO ef%dt by Sub-Gaussian tail bound

:u0+2n-\;w~P[N(0,02) > u)

<y +2n-V2ro?- \/3506“3/(2”2) by the given tail bound

= V202" + ;l?nn by setting ug = V202 In" and simplifying



O
Exercise 2.12.
(a) Note that, for any A > 0:
E [)\ maXXi] =In (exp (E {)\ . maXXiD)
<In (E [exp ()\ - max Xz)D by Jensen’s inequality
<In (Z E [exp(/\Xi)]>
2,2
<lnn+ X; € SubG
Therefore, the expectation is upper bounded:
E {maxXz} = 71}3 [A max; X;]
i A
Inn o2
- A 2
/21
=V20?2lnn by setting A = ¥
o
(b) The first inequality follows by noticing that Z = max; | X;| = max;{X1, Xo, ..., Xpn,—X1,—X2,..., =X, }.
The second inequality is obviously true for n > 2.
O
Exercise 2.13.
A20? A203 A2 (03+02)

(a) E [e)‘(XlJ“X?)] =E [eAXl} E [eAXZ] <e 2z e 2z =-¢ 2, where the first equality holds due to

independence.
(b) We use Hélder’s inequality to do the proof:

E |:6)\(X1+X2)} -E [6,\X16AX2]

< (IE [ep’\Xl} )% (IE [eq’\XQ])% by Holder’s inequality, where % + é =

2))2 2 22)2 2
< \/exp (()\)201> exp (()\)Uz> X1, X5 € SG and by setting p=¢g =2

2
22 2 2 2
:exp<>\ (201 + U1)>

2

7‘”:1”2 ,q = 2% ip part (b).

a2

(c) We can get the desired result by setting p =

(d) By conditional expectation, we have

IE [eAX1X2} — ]:EX2 [EXl [6AX1X2|X2}]

22x3o? -, o
<Ex, |[e” 2 conditional on X5 it is a SubG

1
< ————, VA E[0,1) by Theorem 2.6 (4)

T V1= A20%02

2 2 2
<Nz YAZe252 < 1/2



The last inequality is true since /1 — 2 -e* > 1, Va € (0,1/2). Reorganizing the final term will match
the definition of Sub-Exponential variable with required parameters.

O

Exercise 2.14.
(a) We use layer-cake representation:

Var[X] = E [(X — E[X])?]
- /Oo]p[()(—]E[X})2 > t] dt
0

oo
< / cre”2tdt
0

_a
=
(b) Bernoulli distribution with success probability 1/2. Then, both 0 and 1 are the medians.
(¢) WLOG, we assume § = y—m < 0, where u is the mean and m median. We are interested in the upper
bound of Lh.s in Eq (2.69):
PlIX —m[ = t] <P[(X = p)| + [(u —m)| = 1]
=P[IX —p|>t—0], Vt>0
We separately check two regions:

e { € [20,00): In this range, we have %t <t — 0. Thus, we get another looser upper bound
1 c
P|X —m| >t <P {|X —pl > 24 <ce TV, vte [29, 00)

The last inequality follows from the given inequality Eq (2.68). The most-right-side term shows

that it suffices tolet 8> 1,a = %, then we are fine with that

PIX —m| >t < Berem@et’ e (24, 00).

O

Exercise 2.15. -
Let the random vector X = (X1, Xs,...,X,). We define a new function g(X) = Hf,)f — fH . Easy to
1

check that the function g satisfies the bounded difference property Eq. (2.32), that is, if we change one
element in X to X', we should have:

Ig(X)—g(X’)|=’ ﬁ(—f’l“ﬁ}?_f“ll
< |mE =57,
=l () e (55
<2
n

Both inequalities hold due to triangular inequality. By Corollary 2.21, we have
ns2
—f

Plg(X) —E[g(X)] >d] <e "2,

which is better than the desired result by a constant factor 4 in the exponent.



Exercise 2.16.

(a) Notice that S,, satisfies the bounded difference property (2.32) with parameter 2b;, then according to
Corollary 2.21, we have,

P[|S, — E[S,]| > nd] < 2 57,

which is better than the desired bounded by a constant. This solution follows the same idea as in
Exercise 2.15.

(b) By rearranging the required inequality, we notice that the desired inequality is actually:

P|S, — /ZE[HXA@] >ns| < e f7

By inserting —E [S,,] + E [S,,] into the probability argument’s r.h.s, it suffices to show
2
ElS.) < /S E[IXl5).
i

= VE[SZ] 2 E[S,]

This is true since

S E[IX] 2

]E |

2 X

2
H

O

Exercise 2.17.

We first note that E[Z] = tr(Q) as the X; are standard normal variables. Since @ is a semi-definite
positive matrix, it can be decomposed into Q = PTAP, where A = Diag()\1,...,\,) and P is a unitary
matrix (PP~! = I) with orthogonal and unit-length columns. Because P also satisfies PT = P~! it is a
rotation matrix. And by rotation invariance of Gaussian variables, Pz is also a standard Gaussian vector.
Therefore,

Z = (A Pz (Pz)")=> X-x*(1).

Since x2(1) ~ SubExp(2,4), and by the definition of Sub-Exponential variable, we know that \; - x?(1) ~
SubExp(2X;,4);). As Z is the sum over some sub-exponential variables, Z ~ (24/)_.(\;)?, 4max;{\;}). By
sub-exponential’s tail bound (Proposition 2.9), we have

o?t? ot
The desired bound follows by SDP matrix’s facts that max;{\i} = supj,, <1 [|Qully = @[, and =, A\ =
QI

P[Z — tr(Q) > ot] < exp (_ min (

O

Exercise 2.18.
(a) By the definition of function 1 and the fact that || X]| v, < 100, we have that

exp % <2
B

E [$(1X]/ [l X9)] <1 = E




Then we look at the probability to be bounded. With Chernoff bound, we can show

q|x1?
Pl X]| >t]:IP’[eXp(/\ lq |

| X1
E [|X|3J
<
exp (19/] X113, )
< 2exp (|50 7).

) > eXp()\q)] . VA>0

Clet A=t/ X]),,

(b) This can be proved by contradiction. Suppose that ||1,] is infinite, that means, by taking 1, (u) =
exp (u?) — 1,
Elexp (|X]/t)] > 2, Vt>0.

By layer cake representation, and the given inequality (2.73), we can show that

o0
LHS:/ Plexp (|X| /£) > u] du V>0

0
1 [eS)

:/ P[|X|Ztln(u)]du+/ P[|X]| > tu] du Yt >0
0 0

<1+ / c1 exp (—cotu?) du vVt > 0, by the given ineq.

0

Notice that, for any given § > 0, there must exist ¢ > 0 such that the second term is less than §, we
get a contradiction with LHS > 2.

O

s o (e )

the last inequality comes from the concavity of 1 ~! (since 1 is strictly convex). Then we focus the inner
expectation part:

Exercise 2.19.

[max\X |} < oE

E

W (Zm/")] <ZE (1Xil/a)]

i
O

Exercise 2.20.
The desired inequality is a direct result by applying Chernoff bound and the given Rosenthal’s inequality:

P“Z& s E[(zixi)m] g E[(Zixi)zm] _ Ry {ZiE[Xfm] . (zw[xﬂ)”l}.

(né)2m  — (\/nd)>m nm = (V/nd)2m nm n
Then it remains to show the expression in the parentheses is constant. The second part ) . E [XZQ] /n is
obviously constant. We show that the first part is also a constant:

s E[xem] S [ [T

nm nm

>0 (508"

nm - nm

<

__2m
= Cm

10



Exercise 2.21.

() Prld(X) < 8] = Pr [minjepy | X = 27, <né) < 5, Pr[[[X = 27|, <nd] < N-emnDrrln/2),
where the last inequality is from Exercise 2.9. This inequality holds only when ¢ < 1/2 (this assumption
is not mentioned in this exercise) since X; — z] is a Ber(1/2). Additionally, by assumption that
N < Q"R, we can further control above terms:

N . e~ Pxr(8]1/2) < eM(B—Dkr(8]11/2)) _ 0, asn — oo.

The last convergence comes from another assumption that R < Dy (6||1/2).

(b) (i) Define a new r.v. 1{V >1}. Note that V' =3 .y VieN,soV - -1{V>1} =V, as. Then,
by Cauchy’s inequality, we have

E2[V] =E?[V - 1{V > 1}] (V- 1{V >1} =V,as.)
<E [Vz] -E [112 {V> 1}] (by Cauchy’s inequality)
=E[V?]-Pr[V >1].

E?[V]

= Pr[V>1]> B[V’

(i) TODO
Exercise 2.22.

(a) Denote f(0,x) = exp (% D itk ijxjmk). Notice that f(0,x) is an exponential-like function and is
convex in €. Since Fy(0) :=In(}__, f(0,x)), by vector composition of convex functions, we know Fy
is convex in 6.

(b) By mean-value theorem, there exists o € [0, 1] such that Fy(0 + §) — F4(0) = VF(6 + o - 8)"'8. The
latter is upper bounded by |VF(6 + « - 6)]|, ||6]|,. Now, it remains to control the gradient’s norm.
Given any vector 8, we have:

1/ zanf(0,2)\> 1
IVEa(0)]l, = S\ == ) < = < Vd,
o §d< . /(6,7 ) \/;d

where the first inequality is because x5 < 1. Replace back, we obtain Fy(6+3)—F4(0) < Vd|d]|, , 7,
which is equivalent to desired statement.

(¢) From Jensen’s inequality, we have

E[F4(0)] :=E lln <Z f(e;a;)ﬂ <In (IE

where the last term can be further bounded:

n(IE Zf(@,w)]) In Z]Eg exp Zt%k x\j/%k

Zm:f(&w)] )

J#k
(o (225
n exp
dﬁQ
=dln2+ —
=d + 1

11



The inequality above is by MGF of Gaussian variable and by combining (Z) such variables. The last
line is due to x?mi = 1. Therefore,

Fq(0)
d

52 Fy(0)

Pr —(1n2+4)2t} < Pr [d—]E[Fd(e)]zt

< 2exp (—ﬂdt2/2) )Vt >0,

where the last inequality is by Theorem 2.26. We can apply the theorem as Fy is shown to be Lip-cts
in part (b).

O
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