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1 Chapter 2

Exercise 2.1.

(a) X=0, w.p. 1

(b) X=0, w.p. 1

Exercise 2.2.

(a) obvious

(b) We start from the intermediate term:

P[Z ≥ z] =

∫ ∞

z

ϕ(t)dt

=

∫ ∞

z

−ϕ
′(t)

t
dt by part (a)

=
ϕ(z)

z
− ϕ(z)

z3
+

∫ ∞

z

3
ϕ(t)

t4
dt (≥ LHS, by integration by parts)

=
ϕ(z)

z
− ϕ(z)

z3
+

∫ ∞

z

−3
ϕ′(t)

t5
dt

=
ϕ(z)

z
− ϕ(z)

z3
+ 3

ϕ(z)

z5
−
∫ ∞

z

5
ϕ(t)

t6
dt (≤ RHS, integration by parts)

Exercise 2.3. (Polynimial Markov sharper than Chernoff)
For a given r > 0,

E
[
erX

]
= E

[∑
k

(rX)k

k!

]
=
∑
k

(rδ)k

k!
E
[
Xk

δk

]
≥
∑
k

(rδ)k

k!

(
inf
k
E
[
Xk

δk

])
= erδ

(
inf
k
E
[
Xk

δk

])

⇐⇒
E
[
erX

]
erδ

≥ inf
k
E
[
Xk

δk

]
,∀r ≥ 0

⇐⇒ inf
r>0

E
[
erX

]
erδ

≥ inf
k
E
[
Xk

δk

]

Exercise 2.4. (Hoeffding Lemma)
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(a) By dkψ(r)
drk

= E
[
XkerX

]
, we have ψ(0) = 0 and ψ′(0) = E [X] = µ.

(b) Note that

ψ′(r) =
g′X(r)

gX(r)
,

ψ′′(r) =
g′′X(r)

gX(r)
−
(
g′X(r)

gX(r)

)2

=

∫
x2erxdP
gX(r)

−
(∫

xerxdP
gX(r)

)2

=

∫
x2dQ−

(∫
xdQ

)2

(by defining dQ =
erx

gX(r)
dP)

= VarQ[X]

≤
(
b− a

2

)2

Easy to check that the newly defined measure dQ whose Radon-Nikodym derivative with respect to
dP is dQ

dP = erx

gX(r) is indeed a probability measure as
∫
dQ =

∫
erx

gX(r)dP = 1. The last inequality follows

from the fact that for a bounded univariate random variable, assigning half probability mass to each
end point achieves the maximum variance, which provides an upper bound on supr∈R |ψ′′(r)|.

(c) We show that X is Sub-Gaussian by its definition,

E
[
er(X−µ)

]
= exp (ψ(r)− rµ)

= exp

(
ψ(0) + ψ′(0)r +

1

2
ψ′′(ϵ)r2 − rµ

)
(by Taylor expansion, where ϵ ∈ (0, r))

≤ exp

(
r2( b−a2 )2

2

)
.

The last inequality confirms that X belong to Sub-Gaussian class with parameter σ = b−a
2 .

Exercise 2.5.

(a) By E [1 + rX] ≤ E
[
erX

]
≤ e

r2σ2

2 +rµ,∀r ∈ R, we have

E [X] ≤ e
r2σ2

2 +rµ − 1

r
,∀r > 0.

Taking limit on the right-hand side, and letting r ↘ 0, we have E [X] ≤ µ. Since for −X, the
above analysis holds as well by modifying the r in the numerator to −r, we then have E [−X] ≤ −µ.
Combining two inequalities, we obtain E [X] = µ.

(b) Note that e
r2σ2

2 +rµ ≥ E
[
erX

]
= E

[∑∞
k=0

(rX)k

k!

]
≥ E

[
1 + rX + 1

2 (rX)2
]
holds for all r > 0 if the

third-moment of X is positive and holds for all r < 0 otherwise. WLOG, we assume E
[
X3
]
≥ 0, then

we know that

E
[
X2
]
≤ 2

e
r2σ2

2 +rµ − 1− rµ

r2
,∀r > 0

Let r ↘ 0, we have E
[
X2
]
≤ µ2 + σ2, which implies Var[X] ≤ σ2.
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(c) We provide a counterexample to disprove the statement. Consider a Bernoulli distribution with success
probability p = 1

4 , whose moment generating function is g(r) = 1 − p + per and its variance is

Var[X] = 0.1875. To ensure the inequality g(r) ≤ e
r2σ2

2 +rµ holds for all r ∈ R, the parameter σ2 is

required to be bigger than supr∈R 2ψ(r)−rpr2 . However when r = 1, 2ψ(r)−rpr2 ≈ 0.2147 is larger than
Var[X]. Therefore, the parameter σ2 should be larger than Var[X]. [Conjecture: for an uni-variate
random variable that is symmetric around its center, the parameter σ2 is indeed its variance]

Exercise 2.6.
Since X2

i ≥ 0, a.s., we can use one-sided Bernstein’s inequality (2.23) to derive the bound:

P
[
Z − E [Z] ≤ −σ2δ

]
≤ exp

(
− nδ2σ4

2
n

∑n
i=1 E [X4

i ]

)
.

Then, to obtain the desired bound, it suffices to show that E
[
X4
i

]
≤ 8σ4:

E
[
X4
i

]
=

∫ ∞

0

P
[
X4
i ≥ t

]
dt

=

∫ ∞

0

P
[
X4
i ≥ u4

]
du4 (let t = u4)

≤ 4

∫ ∞

0

u3 · 2e−
u2

2σ2 du (by Sub-Gaussian’s concentration)

= 4 · (2σ2)2
∫ ∞

0

e−
u2

2σ2

(
u2

2σ2

)2−1

d
u2

2σ2

= 16σ4Γ(2)

= 16σ4 (worse by a constant 2)

Exercise 2.7. (Bennett’s inequality)

(a) Since |X| ≤ b, a.s., we know that

E

[ ∞∑
k=2

(λX)k

]
= E

[
(λX)2

∞∑
k=2

(λX)k−2

]
≤ E

[
(λX)2

] ∞∑
k=2

(λb)k−2, ∀λ ≥ 0

Then, for any λ ≥ 0,

ln
(
E
[
eλX

])
= ln

(
E

[
1 + λX +

∞∑
k=2

(λX)k

k!

])
∀λ > 0

= ln

(
1 + E

[ ∞∑
k=2

(λX)k

k!

])

≤ E

[ ∞∑
k=2

(λX)k

k!

]

≤ E
[
(λX)2

] ∞∑
k=2

(λb)k−2

k!

= λ2σ2 e
λb − 1− λb

λ2b2

Now, we consider another random variable denoted as Y = −X, the above analysis still holds for all
λ ≥ 0. This implies that, for random variable X with any negative λ, the desired inequality holds,
which completes the proof.

3



(b) We prove the inequality after taking logarithm on both sides:

ln

(
P

[
n∑
i

Xi ≥ nδ

])
≤ −nλδ +

n∑
i=1

ψXi(λ)

≤ −nλδ +
n∑
i=1

σ2
i λ

2

(
eλb − 1− λb

λ2b2

)
by part (a)

= −nλδ + nσ2λ2
(
eλb − 1− λb

λ2b2

)
= −nσ

2

δ2

[
bδ

σ2
λb− eλb + 1 + λb

]
= −nσ

2

b2
h

(
bδ

σ2

)
by setting λ : λb = ln

(
1 +

bδ

σ2

)
(c) We compare the inequalities for

∑n
i Xi:

• Eq.(2.22b) One-sided Bernstein’s inequality: P [
∑n
i (Xi − µi) ≥ nδ] ≤ exp

(
− nδ2

2( 1
n

∑n
i σ

2
i+

bδ
3 )

)
• Eq.(2.62) Bennett concentration inequality: P [

∑n
i Xi ≥ nδ] ≤ exp

(
−nσ2

b2 h
(
bδ
σ2

))
It suffices to show that

nσ2

b2
h

(
bδ

σ2

)
≥ nδ2

2(σ2 + bδ
3 )

⇐⇒nσ2

b2
h

(
bδ

σ2

)
≥ nσ2

b2

(
bδ
σ2

)2
2(1 + bδ

3σ2 )

⇐⇒h

(
bδ

σ2

)
≥ g

(
bδ

σ2

)
,

where h(u) = (1 + u) ln (1 + u) − u and g(u) = u2

2(1+u
3 ) . We notice that h(0) = g(0) = 0,

h′(0) = g′(0) = 0, but

h′′(u) =
1

1 + u
≥ 216

(6 + 2u)3
= g′′(u),∀u ≥ 0.

Elementary calculus results in h(u) ≥ g(u),∀u ≥ 0. Therefore, Bennett’s inequality is at least as
sharp as Bernstein’s inequality.

Exercise 2.8.

(a) I can only prove a special case when C = 1. We first note that the given inequality (2.63) can be
separated into two parts according to t’s range.

P [Z ≥ t] ≤ e
− t2

2(v2+bt) = e
− t2

2b( v
2
b

+t) ≤

{
exp

(
− t

4b

)
, when t ≥ v2

b

exp
(
− t2

4v2

)
, when t < v2

b

By layer-cake representation, we have

E [Z] =

∫ ∞

0

P [Z ≥ t] dt

≤
∫ v2

b

0

e−
t2

4v2 dt+

∫ ∞

v2

b

e−
t
4b dt

≤
∫ ∞

0

e−
t2

4v2 dt+

∫ ∞

0

e−
t
4b dt

= v
√
π + 4b
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(b) Using part (a), it suffices to show that

P

[
1

n

n∑
i

Xi ≥ t

]
≤ e

− t2

2(σ2n + b
n
t)

Since Xi satisfies Bernstein’s conditions, by Eq. (2.17a),

E
[
eλX

]
≤ e

λ2σ2/2
1−λb ,∀λ ∈ (0, 1/b).

Then, we are able to calculate the probability:

ln

(
P

[
1

n

n∑
i

Xi ≥ t

])
≤ −λnt+

n∑
i

λ2σ2/2

(1− λb)
∀λ ∈ (0, 1/b)

= − nt2

2(σ2 + bt)
by setting λ∗ =

t

σ2 + bt

Exercise 2.9.

(a) This is a straightforward conclusion by applying Chernoff bound:

ln (P [Zn ≤ δn]) = ln (P [−Zn ≥ −nδ])
≤ n ln

(
(1− α+ αe−λ)eλδ

)
, ∀λ > 0 by i.i.d and Chernoff bound

= n

[
(1− δ) ln

(
1− α

1− δ

)
+ δ ln

(α
δ

)]
by setting λ∗ = ln

(α
δ

)
− ln

(
1− α

1− δ

)
= −nDKL(δ∥α)

The minimizer λ∗ we used in the second to the last equality is positive as δ < α ∈ (0, 1/2]

(b) • Hoeffding: P [
∑
iXi − nα ≤ n(δ − α)] ≤ exp

(
− n2(δ−α)2

2
∑
i α(1−α)

)
• Inequality in part (a): P [

∑
iXi ≤ nδ] ≤ exp (−nDKL(δ∥α))

It suffices to show
n(δ − α)2

2α(1− α)
≤ nDKL(δ∥α),

Denote the l.h.s as a function gα(δ) and the r.h.s as another function hα(δ). Then we have gα(α) =
hα(α) = 0. The first-order derivatives are{

g′α(δ) =
δ−α

α(1−α) < 0 ∀δ ∈ (0, α)

h′α(δ) = ln
(
δ
α

)
− ln

(
1−δ
1−α

)
< 0 ∀δ ∈ (0, α)

.

Moreover,

g′′α(δ) =
1

δ(1− δ)
≥ 1

α(1− α)
= h′′α(δ), ∀δ ∈ (0, α).

These results mean that both functions are decreasing and have value 0 at point δ = α, but gα(·)
decreases faster than hα(·). Therefore, g(δ) ≥ h(δ),∀δ ∈ (0, α). (A same argument as that in Exercise
2.7)

Exercise 2.10.
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(a) We have relationships m = δ̃n ≤ δn. Since

P [Yn ≤ δn] = P
[
Zn ≤ δ̃n

]
≥ P

[
Zn = δ̃n

]
=

(
n

m

)
αm(1− α)n−m

Taking logarithm on both sides, then dividing by n, and finally replacing m
n with δ̃, we get the desired

inequality.

(b) Let Zn ∼ Bin(n, δ̃). With the fact that Yn are most likely to be m = δ̃n, we have the following
relationship:

P
[
Yn = δ̃n

]
≥ P [Yn = l] , ∀l ∈ {0, 1, 2, . . . , n}.

Following the same operations in part (a), we can rewrite the inequality as:

1
n ln

(
n
m

)
+ δ̃ lnα+(1− δ̃) ln (1− α) ≥ 1

n
ln (P [Yn = l])

⇐⇒ 1
n ln

(
n
m

)
≥ −δ̃ lnα−(1− δ̃) ln (1− α) +

1

n
ln (P [Yn = l])

≥ −δ̃ lnδ̃ −(1− δ̃) ln
(
1− δ̃

)
+

1

n
ln (P [Yn = l]).

The last inequality holds as the function is increasing in α and δ̃ ≤ α. Then it remains to show

∃l ∈ {0, 1, . . . , n}, s.t., P [Yn = l] ≥ 1

1 + n
.

There indeed exists such an l since Yn has only 1 + n outcomes, and obviously at least one outcome
should have a probability no smaller than 1

1+n .

(c) Substituting the inequality in part (b) into the r.h.s of the inequality in part (a), and rearranging, we
have:

1
n ln (P [Zn ≤ δn]) ≥ −DKL(δ̃∥α)−

ln (n+ 1)

n

⇐⇒ P [Zn ≥ δn] ≥ 1

1 + n
exp(−nDKL(δ̃∥α))

Combining the result here and the result in Exercise 2.9 part (a), we bound Zn’s lower tail bound from
both above and below. The bounds differ only in a constant factor.

1

1 + n
e−nDKL(δ̃∥α) ≤ P

[
Zn ≤ δ̃n

]
≤ e−nDKL(δ̃∥α)

Exercise 2.11.

(a) We use layer-cake representation and do integration on two different regions.

E [Zn] =

∫ ∞

0

P
[
max
i

|Xi| ≥ t
]
dt

=

∫ u0

0

P
[
max
i

|Xi| ≥ t
]
dt+

∫ ∞

u0

P
[
max
i

|Xi| ≥ t
]
dt

≤ u0 + 2n

∫ ∞

u0

P [Xi ≥ t] dt by union bound and X is symmetric

≤ u0 + 2n

∫ ∞

u0

e−
t2

2σ2 dt by Sub-Gaussian tail bound

= u0 + 2n ·
√
2πσ2 · P

[
N(0, σ2) ≥ u0

]
≤ u0 + 2n ·

√
2πσ2 ·

√
2

π

σ

u0
e−u

2
0/(2σ

2) by the given tail bound

=
√
2σ2 lnn +

4σ√
2 lnn

by setting u0 =
√
2σ2 lnn and simplifying
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(b)

(c)

Exercise 2.12.

(a) Note that, for any λ > 0:

E
[
λmax

i
Xi

]
= ln

(
exp

(
E
[
λ ·max

i
Xi

]))
≤ ln

(
E
[
exp

(
λ ·max

i
Xi

)])
by Jensen’s inequality

≤ ln

(∑
i

·E [exp(λXi)]

)

≤ lnn+
λ2σ2

2
Xi ∈ SubG

Therefore, the expectation is upper bounded:

E
[
max
i
Xi

]
=

E [λmaxiXi]

λ

≤ lnn

λ
+
λσ2

2

=
√
2σ2 lnn by setting λ =

√
2 lnn

σ2

(b) The first inequality follows by noticing that Z = maxi |Xi| = maxi{X1, X2, . . . , Xn,−X1,−X2, . . . ,−Xn}.
The second inequality is obviously true for n ≥ 2.

Exercise 2.13.

(a) E
[
eλ(X1+X2)

]
= E

[
eλX1

]
E
[
eλX2

]
≤ e

λ2σ21
2 e

λ2σ22
2 = e

λ2(σ21+σ22)

2 , where the first equality holds due to
independence.

(b) We use Hölder’s inequality to do the proof:

E
[
eλ(X1+X2)

]
= E

[
eλX1eλX2

]
≤
(
E
[
epλX1

]) 1
p
(
E
[
eqλX2

]) 1
q by Hölder’s inequality, where

1

p
+

1

q
=

≤

√
exp

(
(2λ)2σ2

1

2

)
exp

(
(2λ)2σ2

2

2

)
X1, X2 ∈ SG and by setting p = q = 2

= exp

(
λ2(2σ2

1 + 2σ2
1)

2

)
(c) We can get the desired result by setting p = σ1+σ2

σ1
, q = σ1+σ2

σ2
in part (b).

(d) By conditional expectation, we have

E
[
eλX1X2

]
= EX2

[
EX1

[
eλX1X2 |X2

]]
≤ EX2

[
e
λ2X2

2σ
2
1

2

]
conditional on X2 it is a SubG

≤ 1√
1− λ2σ2

1σ
2
2

, ∀λ ∈ [0, 1) by Theorem 2.6 (4)

≤ eλ
2σ2

1σ
2
2 , ∀λ2σ2

1σ
2
2 ≤ 1/2
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The last inequality is true since
√
1− x · ex ≥ 1, ∀x ∈ (0, 1/2). Reorganizing the final term will match

the definition of Sub-Exponential variable with required parameters.

Exercise 2.14.

(a) We use layer-cake representation:

Var[X] = E
[
(X − E [X])2

]
=

∫ ∞

0

P
[
(X − E [X])2 ≥ t

]
dt

≤
∫ ∞

0

c1e
−c2tdt

=
c1
c2

(b) Bernoulli distribution with success probability 1/2. Then, both 0 and 1 are the medians.

(c) WLOG, we assume δ = µ−m ≤ 0, where µ is the mean and m median. We are interested in the upper
bound of l.h.s in Eq (2.69):

P [|X −m| ≥ t] ≤ P [|(X − µ)|+ |(µ−m)| ≥ t]

= P [|X − µ| ≥ t− δ] , ∀t ≥ 0

We separately check two regions:

• t ∈ [2δ,∞): In this range, we have 1
2 t ≤ t− δ. Thus, we get another looser upper bound

P [|X −m| ≥ t] ≤ P
[
|X − µ| ≥ 1

2
t

]
≤ c1e

− c2
4 t

2

, ∀t ∈ [2δ,∞)

The last inequality follows from the given inequality Eq (2.68). The most-right-side term shows
that it suffices to let β ≥ 1, α = 1

4 , then we are fine with that

P [|X −m| ≥ t] ≤ βc1e
−αc2t2 , t ∈ [2δ,∞).

• .

Exercise 2.15.
Let the random vector X = (X1, X2, . . . , Xn). We define a new function g(X) =

∥∥∥f̂Xn − f
∥∥∥
1
. Easy to

check that the function g satisfies the bounded difference property Eq. (2.32), that is, if we change one
element in X to X ′, we should have:

|g(X)− g(X ′)| =
∣∣∣∥∥∥f̂Xn − f

∥∥∥
1
−
∥∥∥f̂X′
n − f

∥∥∥
1

∣∣∣
≤
∥∥∥f̂Xn − f̂X′

n

∥∥∥
1

=
1

n

∫ ∞

−∞

∣∣∣∣ 1hK
(
x−X

h

)
− 1

h
K

(
x−X ′

h

)∣∣∣∣ dx
≤ 2

n

Both inequalities hold due to triangular inequality. By Corollary 2.21, we have

P [g(X)− E [g(X)] ≥ δ] ≤ e−
nδ2

2 ,

which is better than the desired result by a constant factor 4 in the exponent.
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Exercise 2.16.

(a) Notice that Sn satisfies the bounded difference property (2.32) with parameter 2bi, then according to
Corollary 2.21, we have,

P [|Sn − E [Sn]| ≥ nδ] ≤ 2e−
nδ2

2b2 ,

which is better than the desired bounded by a constant. This solution follows the same idea as in
Exercise 2.15.

(b) By rearranging the required inequality, we notice that the desired inequality is actually:

P

Sn −
√∑

i

E
[
∥Xi∥2H

]
≥ nδ

 ≤ e−
nδ2

8b2 .

By inserting −E [Sn] + E [Sn] into the probability argument’s r.h.s, it suffices to show

E [Sn] ≤
√∑

i

E
[
∥Xi∥2H

]
.

This is true since √∑
i

E
[
∥Xi∥2H

]
≥

√√√√√E

∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
2

H

 =
√
E [S2

n] ≥ E [Sn]

Exercise 2.17.
We first note that E [Z] = tr(Q) as the Xi are standard normal variables. Since Q is a semi-definite

positive matrix, it can be decomposed into Q = P⊤ΛP , where Λ = Diag(λ1, . . . , λn) and P is a unitary
matrix (PP−1 = I) with orthogonal and unit-length columns. Because P also satisfies P⊤ = P−1, it is a
rotation matrix. And by rotation invariance of Gaussian variables, Px is also a standard Gaussian vector.
Therefore,

Z =
〈
Λ, Px · (Px)⊤

〉
=
∑
i

λi · χ2(1).

Since χ2(1) ∼ SubExp(2, 4), and by the definition of Sub-Exponential variable, we know that λi · χ2(1) ∼
SubExp(2λi, 4λi). As Z is the sum over some sub-exponential variables, Z ∼ (2

√∑
i(λi)

2, 4maxi{λi}). By
sub-exponential’s tail bound (Proposition 2.9), we have

P [Z − tr(Q) ≥ σt] ≤ exp

(
−min

(
σ2t2

8
∑
i λ

2
i

,
σt

8maxi{λi}

))
.

The desired bound follows by SDP matrix’s facts that maxi{λi} = sup∥u∥2≤1 ∥Qu∥2 = ∥Q∥2 and
∑
i λ

2
i =

∥Q∥2F .

Exercise 2.18.

(a) By the definition of function ψ and the fact that ∥X∥ψq ≤ +∞, we have that

E
[
ψ(|X| / ∥ψq∥Xq)

]
≤ 1 ⇐⇒ E

[
exp

(
|X|q

∥X∥qψq

)]
≤ 2

9



Then we look at the probability to be bounded. With Chernoff bound, we can show

P [|X| > t] = P
[
exp

(
λq |X|q

tq

)
> exp (λq)

]
, ∀λ > 0

≤
E
[

|X|q
∥X∥qψq

]
exp

(
tq/ ∥X∥qψq

) , let λ = t/ ∥X∥ψq

≤ 2 exp
(
∥X∥−qψq · tq

)
.

(b) This can be proved by contradiction. Suppose that ∥ψq∥ is infinite, that means, by taking ψq(u) =
exp (uq)− 1,

E [exp (|X| /t)] > 2, ∀t > 0.

By layer cake representation, and the given inequality (2.73), we can show that

LHS =

∫ ∞

0

P [exp (|X| /t) ≥ u] du ∀t > 0

=

∫ 1

0

P [|X| ≥ t ln (u)] du+

∫ ∞

0

P [|X| ≥ tu] du ∀t > 0

≤ 1 +

∫ ∞

0

c1 exp (−c2tquq) du ∀t > 0,by the given ineq.

Notice that, for any given δ > 0, there must exist t > 0 such that the second term is less than δ, we
get a contradiction with LHS > 2.

Exercise 2.19.

E
[
max
i

|Xi|
]
≤ σE

[∑
i

|Xi| /σ

]
= σE

[
ψ−1

(
ψ

(∑
i

|Xi| /σ

))]
≤ σψ−1

(
E

[
ψ

(∑
i

|Xi| /σ

)])
,

the last inequality comes from the concavity of ψ−1 (since ψ is strictly convex). Then we focus the inner
expectation part:

E

[
ψ

(∑
i

|Xi| /σ

)]
≤
∑
i

E [ψ (|Xi|/σ)] ≤ n.

Exercise 2.20.
The desired inequality is a direct result by applying Chernoff bound and the given Rosenthal’s inequality:

P

[∣∣∣∣∣ 1n∑
i

Xi

∣∣∣∣∣ ≥ δ

]
≤

E
[
(
∑
iXi)

2m
]

(nδ)2m
=

1

(
√
nδ)2m

·
E
[
(
∑
iXi)

2m
]

nm
≤ Rm

(
√
nδ)2m

{∑
i E
[
X2m
i

]
nm

+

(∑
i E
[
X2
i

]
n

)m}
.

Then it remains to show the expression in the parentheses is constant. The second part
∑
i E
[
X2
i

]
/n is

obviously constant. We show that the first part is also a constant:

∑
i E
[
X2m
i

]
nm

=

∑
i

[(
E
[
X2m
i

])1/(2m)
]2m

nm
≤
∑
i C

2m
m

nm
≤
(∑

i C
2
m

)m
nm

= C2m
m
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Exercise 2.21.

(a) Pr [d(X) ≤ δ] = Pr
[
minj∈[N ]

∥∥X − zj
∥∥
1
≤ nδ

]
≤
∑
j∈[N ] Pr

[∥∥X − zj
∥∥
1
≤ nδ

]
≤ N · e−n·DKL(δ∥1/2),

where the last inequality is from Exercise 2.9. This inequality holds only when δ < 1/2 (this assumption
is not mentioned in this exercise) since Xi − zji is a Ber(1/2). Additionally, by assumption that
N ≤ 2nR, we can further control above terms:

N · e−n·DKL(δ∥1/2) ≤ en(R−DKL(δ∥1/2)) → 0, as n→ ∞.

The last convergence comes from another assumption that R < DKL(δ∥1/2).

(b) (i) Define a new r.v. 1 {V ≥ 1}. Note that V =
∑
j∈[N ] V

j ∈ N, so V · 1 {V ≥ 1} = V , a.s. Then,
by Cauchy’s inequality, we have

E2[V ] = E2 [V · 1 {V ≥ 1}] (V · 1 {V ≥ 1} = V, a.s.)

≤ E
[
V 2
]
· E
[
1
2 {V ≥ 1}

]
(by Cauchy’s inequality)

= E
[
V 2
]
· Pr [V ≥ 1] .

=⇒ Pr [V ≥ 1] ≥ E2[V ]

E [V 2]
.

(i) TODO

Exercise 2.22.

(a) Denote f(θ,x) = exp
(

1√
d

∑
j ̸=k θjkxjxk

)
. Notice that f(θ,x) is an exponential-like function and is

convex in θ. Since Fd(θ) := ln (
∑

x f(θ,x)), by vector composition of convex functions, we know Fd
is convex in θ.

(b) By mean-value theorem, there exists α ∈ [0, 1] such that Fd(θ + δ) − Fd(θ) = ∇F (θ + α · δ)⊤δ. The
latter is upper bounded by ∥∇F (θ + α · δ)∥2 ∥δ∥2. Now, it remains to control the gradient’s norm.
Given any vector θ, we have:

∥∇Fd(θ)∥2 =

√√√√∑
j ̸=k

1

d

(∑
x xjxkf(θ,x)∑

x f(θ,x)

)2

≤
√∑
j ̸=k

1

d
≤

√
d,

where the first inequality is because xjxk ≤ 1. Replace back, we obtain Fd(θ+δ)−Fd(θ) ≤
√
d ∥δ∥2 ,∀δ,

which is equivalent to desired statement.

(c) From Jensen’s inequality, we have

E [Fd(θ)] := E

[
ln

(∑
x

f(θ;x)

)]
≤ ln

(
E

[∑
x

f(θ,x)

])
,

where the last term can be further bounded:

ln

(
E

[∑
x

f(θ,x)

])
= ln

∑
x

Eθ

exp
∑
j ̸=k

θjk ·
xjxk√
d


≤ ln

(∑
x

exp

(∑
j ̸=k x

2
jx

2
kβ

2

2d

))

= d ln 2 +
dβ2

4
.

11



The inequality above is by MGF of Gaussian variable and by combining
(
n
2

)
such variables. The last

line is due to x2jx
2
k = 1. Therefore,

Pr

[
Fd(θ)

d
− (ln 2 +

β2

4
) ≥ t

]
≤ Pr

[
Fd(θ)

d
− E [Fd(θ)] ≥ t

]
≤ 2 exp

(
−βdt2/2

)
,∀t > 0,

where the last inequality is by Theorem 2.26. We can apply the theorem as Fd is shown to be Lip-cts
in part (b).
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